[go: up one dir, main page]

login
A298593
Triangle read by rows: T(n,k) = number of times the value k appears on the parking functions of length n.
4
1, 4, 2, 24, 15, 9, 200, 136, 100, 64, 2160, 1535, 1215, 945, 625, 28812, 21036, 17286, 14406, 11526, 7776, 458752, 341103, 286671, 247296, 211456, 172081, 117649, 8503056, 6405904, 5464712, 4811528, 4251528, 3691528, 3038344, 2097152, 180000000, 136953279, 118078911, 105372819, 94921875, 85078125, 74627181, 61921089, 43046721
OFFSET
1,2
COMMENTS
T(n,k) is the number of pairs (f,i) such that f is a parking function and f(i) = k.
FORMULA
T(n,k) = n*Sum_{j=k..n} binomial(n-1, j-1)*j^(j-2)*(n+1-j)^(n-1-j).
T(n,k) = n*A298592(n,k).
T(n,k) = n*Sum_{j=k..n} A298594(n,j).
T(n,k) = Sum_{j=k..n} A298597(n,j).
Sum_{k=1..n} T(n,k) = n*A000272(n+1).
T(n+1,1) = A089946(n), T(n,n) = A000169(n). - Andrey Zabolotskiy, Feb 21 2018
EXAMPLE
Triangle begins:
====================================================================
n\k| 1 2 3 4 5 6 7 8
---|----------------------------------------------------------------
1 | 1
2 | 4 2
3 | 24 15 9
4 | 200 136 100 64
5 | 2160 1535 1215 945 625
6 | 28812 21036 17286 14406 11526 7776
7 | 458752 341103 286671 247296 211456 172081 117649
8 | 8503056 6405904 5464712 4811528 4251528 3691528 3038344 2097152
...
MATHEMATICA
Table[n Sum[Binomial[n - 1, j - 1] j^(j - 2)*(n + 1 - j)^(n - 1 - j), {j, k, n}], {n, 9}, {k, n}] // Flatten (* Michael De Vlieger, Jan 22 2018 *)
CROSSREFS
KEYWORD
easy,nonn,tabl
AUTHOR
Rui Duarte, Jan 22 2018
STATUS
approved