[go: up one dir, main page]

login
A298302
The first of three consecutive primes the sum of which is equal to the sum of three consecutive heptagonal numbers.
4
17, 967, 7477, 15877, 17093, 24337, 69467, 99689, 123983, 241333, 375773, 457307, 501077, 525983, 604411, 654587, 772001, 780347, 1007099, 1023037, 1124593, 1192651, 1206497, 1423921, 1488797, 1598791, 1610809, 1692071, 1809221, 2297759, 2538623, 3017849
OFFSET
1,1
LINKS
Chai Wah Wu, Table of n, a(n) for n = 1..10000 (n = 1..100 from Colin Barker)
EXAMPLE
17 is in the sequence because 17+19+23 (consecutive primes) = 59 = 7+18+34 (consecutive hexagonal numbers).
PROG
(PARI) L=List(); forprime(p=2, 4000000, q=nextprime(p+1); r=nextprime(q+1); t=p+q+r; if(issquare(120*t-519, &sq) && (sq-21)%30==0, u=(sq-21)\30; listput(L, p))); Vec(L)
KEYWORD
nonn
AUTHOR
Colin Barker, Jan 16 2018
STATUS
approved