OFFSET
0,8
LINKS
Alois P. Heinz, Antidiagonals n = 0..200, flattened
FORMULA
G.f. of column k: Product_{j>=1} 1/(1 - j*x^j)^k.
A(0,k) = 1; A(n,k) = (k/n) * Sum_{j=1..n} A078308(j) * A(n-j,k). - Seiichi Manyama, Aug 16 2023
EXAMPLE
G.f. of column k: A_k(x) = 1 + k*x + (1/2)*k*(k + 5)*x^2 + (1/6)*k*(k^2 + 15*k + 20)*x^3 + (1/24)*k*(k^3 + 30*k^2 + 155*k + 150)*x^4 + (1/120)*k*(k^4 + 50*k^3 + 575*k^2 + 1750*k + 624)*x^5 + ...
Square array begins:
1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, ...
0, 3, 7, 12, 18, 25, ...
0, 6, 18, 37, 64, 100, ...
0, 14, 49, 114, 219, 375, ...
0, 25, 114, 312, 676, 1276, ...
MATHEMATICA
Table[Function[k, SeriesCoefficient[Product[1/(1 - i x^i)^k, {i, 1, n}], {x, 0, n}]][j - n], {j, 0, 11}, {n, 0, j}] // Flatten
PROG
(PARI) first(n, k) = my(res = matrix(n, k)); for(u=1, k, my(col = Vec(prod(j=1, n, 1/(1 - j*x^j)^(u-1)) + O(x^n))); for(v=1, n, res[v, u] = col[v])); res \\ Iain Fox, Dec 28 2017
CROSSREFS
Columns k=0..32 give A000007, A006906, A022726, A022727, A022728, A022729, A022730, A022731, A022732, A022733, A022734, A022735, A022736, A022737, A022738, A022739, A022740, A022741, A022742, A022743, A022744, A022745, A022746, A022747, A022748, A022749, A022750, A022751, A022752, A022753, A022754, A022755, A022756.
Main diagonal gives A297329.
Antidiagonal sums give A299162.
KEYWORD
nonn,tabl
AUTHOR
Ilya Gutkovskiy, Dec 28 2017
STATUS
approved