[go: up one dir, main page]

login
A297102
T(n,k)=Number of nXk 0..1 arrays with no 1 adjacent to 4 king-move neighboring 1s.
8
2, 4, 4, 8, 16, 8, 16, 58, 58, 16, 32, 216, 351, 216, 32, 64, 808, 2258, 2258, 808, 64, 128, 3016, 14566, 26278, 14566, 3016, 128, 256, 11264, 93654, 304059, 304059, 93654, 11264, 256, 512, 42080, 602723, 3498712, 6316836, 3498712, 602723, 42080, 512
OFFSET
1,1
COMMENTS
Table starts
...2......4........8.........16............32..............64...............128
...4.....16.......58........216...........808............3016.............11264
...8.....58......351.......2258.........14566...........93654............602723
..16....216.....2258......26278........304059.........3498712..........40369420
..32....808....14566.....304059.......6316836.......129966319........2685011300
..64...3016....93654....3498712.....129966319......4769336288......175908737504
.128..11264...602723...40369420....2685011300....175908737504....11598374165583
.256..42080..3879430..465695460...55461279894...6486806363511...764506387012021
.512.157192.24968616.5371615378.1145287856764.239124095978045.50370121334317960
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 2*a(n-1)
k=2: a(n) = 4*a(n-1) -2*a(n-2) +6*a(n-3) -8*a(n-4) -4*a(n-6)
k=3: [order 20]
k=4: [order 47]
EXAMPLE
Some solutions for n=4 k=4
..0..0..0..0. .0..1..0..1. .0..0..1..0. .0..1..1..1. .1..1..0..1
..0..0..0..0. .0..0..0..1. .0..1..0..1. .1..0..0..0. .1..0..1..0
..1..0..0..1. .1..0..1..0. .0..0..0..1. .1..1..0..0. .1..0..1..0
..1..0..0..0. .1..0..0..0. .0..0..1..0. .1..0..0..0. .1..1..0..1
CROSSREFS
Column 1 is A000079.
Sequence in context: A295716 A282399 A297374 * A283415 A283857 A227442
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Dec 25 2017
STATUS
approved