OFFSET
1,3
COMMENTS
Rotations and reflections of placements are not counted. If they are to be counted see A296997.
The condition of placements is also known as "no 3-term arithmetic progressions".
LINKS
Heinrich Ludwig, Table of n, a(n) for n = 1..1000
Index entries for linear recurrences with constant coefficients, signature (3,1,-11,6,14,-14,-6,11,-1,-3,1).
FORMULA
a(n) = (n^6 -3*n^4 +5*n^3 -4*n^2 +4n)/48 + (n == 1 mod 2)*(8*n^3 -18n^2 +7*n)/48.
From Colin Barker, Jan 12 2018: (Start)
G.f.: x^2*(1 + 11*x + 32*x^2 + 82*x^3 + 54*x^4 + 57*x^5 + 2*x^6 + 2*x^7 - x^8) / ((1 - x)^7*(1 + x)^4).
a(n) = (n^6 - 3*n^4 + 5*n^3 - 4*n^2 + 4*n) / 48 for n even.
a(n) = (n^6 - 3*n^4 + 13*n^3 - 22*n^2 + 11*n) / 48 for n odd.
a(n) = 3*a(n-1) + a(n-2) - 11*a(n-3) + 6*a(n-4) + 14*a(n-5) - 14*a(n-6) - 6*a(n-7) + 11*a(n-8) - a(n-9) - 3*a(n-10) + a(n-11) for n>11.
(End)
MATHEMATICA
Array[(#^6 - 3 #^4 + 5 #^3 - 4 #^2 + 4 #)/48 + Boole[OddQ@ #] (8 #^3 - 18 #^2 + 7 #)/48 &, 35] (* or *)
Rest@ CoefficientList[Series[x^2*(1 + 11 x + 32 x^2 + 82 x^3 + 54 x^4 + 57 x^5 + 2 x^6 + 2 x^7 - x^8)/((1 - x)^7*(1 + x)^4), {x, 0, 35}], x] (* Michael De Vlieger, Jan 12 2018 *)
PROG
(PARI) concat(0, Vec(x^2*(1 + 11*x + 32*x^2 + 82*x^3 + 54*x^4 + 57*x^5 + 2*x^6 + 2*x^7 - x^8) / ((1 - x)^7*(1 + x)^4) + O(x^40))) \\ Colin Barker, Jan 12 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Heinrich Ludwig, Jan 12 2018
STATUS
approved