[go: up one dir, main page]

login
A296921
Rational primes that decompose in the field Q(sqrt(-163)).
3
41, 43, 47, 53, 61, 71, 83, 97, 113, 131, 151, 167, 173, 179, 197, 199, 223, 227, 251, 263, 281, 307, 313, 347, 359, 367, 373, 379, 383, 397, 409, 419, 421, 439, 457, 461, 487, 499, 503, 523, 547, 563, 577, 593, 607, 641, 647, 653, 661, 673, 677, 691, 701, 709, 733, 739, 743, 773, 787, 797
OFFSET
1,1
COMMENTS
From Jianing Song, Oct 13 2022: (Start)
Primes p such that kronecker(-163,p) = 1 (or equivalently, kronecker(p,163) = 1).
Primes p such that p^81 == 1 (mod 163). (End)
MAPLE
Load the Maple program HH given in A296920. Then run HH(-163, 200);
PROG
(PARI) isA296921(p) = isprime(p) && kronecker(p, 163) == 1
CROSSREFS
A257362, the sequence of primes that do not remain inert in the field Q(sqrt(-163)), is essentially the same.
Cf. A296915 (rational primes that remain inert in the field Q(sqrt(-163))).
Sequence in context: A282319 A257362 A330673 * A202018 A005846 A273756
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Dec 25 2017
STATUS
approved