[go: up one dir, main page]

login
A295682
a(n) = a(n-1) + a(n-3) + a(n-4), where a(0) = 0, a(1) = 2, a(2) = 0, a(3) = 1.
1
0, 2, 0, 1, 3, 5, 6, 10, 18, 29, 45, 73, 120, 194, 312, 505, 819, 1325, 2142, 3466, 5610, 9077, 14685, 23761, 38448, 62210, 100656, 162865, 263523, 426389, 689910, 1116298, 1806210, 2922509, 4728717, 7651225, 12379944, 20031170, 32411112, 52442281, 84853395
OFFSET
0,2
COMMENTS
a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622), so that a( ) has the growth rate of the Fibonacci numbers (A000045).
FORMULA
a(n) = a(n-1) + a(n-3) + a(n-4), where a(0) = 0, a(1) = 2, a(2) = 0, a(3) = 1.
G.f.: (-2 x + 2 x^2 - x^3)/(-1 + x + x^3 + x^4).
MATHEMATICA
LinearRecurrence[{1, 0, 1, 1}, {0, 2, 0, 1}, 100]
CROSSREFS
Sequence in context: A355173 A108458 A254281 * A195772 A330618 A062104
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Nov 29 2017
STATUS
approved