[go: up one dir, main page]

login
A295370
Number of permutations of [n] avoiding three consecutive terms in arithmetic progression.
16
1, 1, 2, 4, 18, 80, 482, 3280, 26244, 231148, 2320130, 25238348, 302834694, 3909539452, 54761642704, 816758411516, 13076340876500, 221396129723368, 3985720881222850, 75503196628737920, 1510373288335622576, 31634502738658957588, 696162960370556156224, 15978760340940405262668
OFFSET
0,3
COMMENTS
These are permutations of n whose second-differences are nonzero. - Gus Wiseman, Jun 03 2019
EXAMPLE
a(3) = 4: 132, 213, 231, 312.
a(4) = 18: 1243, 1324, 1342, 1423, 2134, 2143, 2314, 2413, 2431, 3124, 3142, 3241, 3412, 3421, 4132, 4213, 4231, 4312.
MAPLE
b:= proc(s, j, k) option remember; `if`(s={}, 1,
add(`if`(k=0 or 2*j<>i+k, b(s minus {i}, i,
`if`(2*i-j in s, j, 0)), 0), i=s))
end:
a:= n-> b({$1..n}, 0$2):
seq(a(n), n=0..12);
MATHEMATICA
Table[Length[Select[Permutations[Range[n]], !MemberQ[Differences[#, 2], 0]&]], {n, 0, 5}] (* Gus Wiseman, Jun 03 2019 *)
b[s_, j_, k_] := b[s, j, k] = If[s == {}, 1, Sum[If[k == 0 || 2*j != i + k, b[s~Complement~{i}, i, If[MemberQ[s, 2*i - j ], j, 0]], 0], {i, s}]];
a[n_] := a[n] = b[Range[n], 0, 0];
Table[Print[n, " ", a[n]]; a[n], {n, 0, 16}] (* Jean-François Alcover, Nov 20 2023, after Alois P. Heinz *)
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Nov 20 2017
EXTENSIONS
a(22)-a(23) from Vaclav Kotesovec, Mar 22 2022
STATUS
approved