## Maple-assisted proof of formula for A295200

## Robert Israel

## 17 November 2017

There are  $2^6 = 64$  possible configurations for a  $2 \times 3$  sub-array. Consider the  $64 \times 64$  transition matrix T such that  $T_{ij} = 1$  if the bottom two rows of a  $3 \times 3$  sub-array could be in configuration i while the top two rows are in configuration j (i.e. the middle row is compatible with both i and j, and each 1 in that row is horizontally or vertically adjacent to 2 or 3 1's), and 0 otherwise. The following Maple code computes it. I'm encoding a configuration

$$\left[\begin{array}{ccc} b_1 & b_2 & b_3 \\ b_4 & b_5 & b_6 \end{array}\right]$$

as b+1 where  $b_1b_2b_3b_4b_5b_6$  is the binary representation of b. The +1 is needed because matrix indices start at 1 rather than 0.

```
> q:= proc(a,b) local r,s,t,M,i;
      s:=floor((a-1)/8);
      if s <> (b-1) mod 8 then return 0 fi;
      s:= convert(s+8,base,2);
      r:= convert(8+floor((b-1)/8),base,2);
      t:= convert(8+ ((a-1) mod 8),base,2);
      M:= Vector(3);
      if s[1] = 1 and s[2] = 1 then M[1] := 1; M[2] := 1 fi;
      if s[2]=1 and s[3]=1 then M[2]:=M[2]+1; M[3]:=1 fi;
      for i from 1 to 3 do if s[i]=1 then
        M[i] := M[i] + r[i] + t[i];
         if M[i] <= 1 or M[i]=3 then return 0 fi;</pre>
      1
  end proc:
  T:= Matrix(64,64, q);
                           T := \begin{bmatrix} 64 & x & 64 & Matrix \\ Data & Type: & anything \\ Storage: & rectangular \\ Order: & Fortran\_order \end{bmatrix}
                                                                                       (1)
```

Thus  $a(n) = u T^n v$  where u and v are row and column vectors respectively with  $u_i = 1$  for i corresponding to configurations with bottom row (0, 0, 0), 0 otherwise, and  $v_i = 1$  for i corresponding to configurations with top row (0, 0, 0), 0 otherwise. The following Maple code produces these vectors.

```
> u:= Vector[row](64):
    v:= Vector(64):
    for i from 0 to 7 do u[8*i+1]:= 1; v[i+1]:= 1;
    od:
```

To check, here are the first few entries of our sequence.

> seq(u . T^n . v, n = 1 .. 10);  

$$1, 3, 8, 14, 25, 53, 111, 217, 426, 860$$
 (2)

Now here is the minimal polynomial *P* of *T*, as computed by Maple.

> P:= unapply (LinearAlgebra: -MinimalPolynomial (T, t), t);  

$$P := t \rightarrow t^{18} - 5 t^{17} + 10 t^{16} - 13 t^{15} + 11 t^{14} - t^{13} - 7 t^{12} + 12 t^{11} - 2 t^{10} - 3 t^{9} + t^{8} - 5 t^{7}$$

$$-4 t^{6} + 3 t^{5} + 2 t^{4}$$
(3)

This turns out to have degree 18. Thus we will have  $0 = u P(T) T^n v = \sum_{i=0}^{18} p_i a(i+n)$  where  $p_i$  is the

coefficient of  $t^i$  in P(t). That corresponds to a homogeneous linear recurrence of order 18, which would hold true for any u and v. It seems that with our particular u and v we have a recurrence of order only 5, corresponding to a factor of P.

> factor(P(t));  

$$t^{4}(t-1)(t-2)(t^{2}+1)(t^{3}-t^{2}-2t-1)(t^{4}+t^{2}-1)(t^{3}-t^{2}+t+1)$$
(4)

> Q:= unapply(t^5-2\*t^4+t^3-2\*t^2-t+2, t); factor(Q(t));  $Q := t \rightarrow t^5 - 2 t^4 + t^3 - 2 t^2 - t + 2$ 

$$(t-2)(t^4+t^2-1)$$
 (5)

The complementary factor  $R(t) = \frac{P(t)}{Q(t)}$  has degree 13.

> R:= unapply (normal (P(t)/Q(t)), t);  

$$R := t \rightarrow (t^9 - 3t^8 + 3t^7 - 2t^6 - t^5 - t^3 + 2t + 1)t^4$$
(6)

Now we want to show that  $b(n) = u Q(T) T^n v = 0$  for all n. This will certainly satisfy the order-13 recurrence

$$\sum_{i=0}^{13} r_i b(i+n) = \sum_{i=0}^{13} r_i u \ Q(T) \ T^{n+i} v = u \ Q(T) \ R(T) \ T^n v = u \ P(T) \ T^n v = 0$$

where  $r_i$  are the coefficients of R(t). To show all b(n) = 0 it suffices to show b(0) = ... = b(12) = 0.

> seq( u . Q(T) . T^n . v, n = 0 .. 12);  

$$0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0$$
 (7)