[go: up one dir, main page]

login
A295188
Decimal expansion of phi^3 * exp(1 - 1/phi), where phi is the golden ratio.
3
6, 2, 0, 6, 5, 2, 7, 0, 3, 8, 3, 9, 7, 1, 6, 3, 7, 3, 1, 0, 0, 0, 7, 4, 0, 5, 3, 2, 1, 8, 6, 5, 8, 0, 5, 8, 5, 2, 7, 8, 0, 5, 2, 8, 7, 0, 8, 4, 7, 9, 6, 2, 0, 2, 2, 9, 2, 6, 0, 7, 5, 3, 9, 6, 8, 7, 9, 0, 5, 8, 4, 9, 3, 7, 5, 6, 1, 4, 1, 8, 4, 4, 4, 3, 5, 6, 3, 1, 1, 2, 2, 6, 1, 0, 2, 3, 0, 5, 0, 6, 3, 7, 0, 2, 4
OFFSET
1,1
FORMULA
Equals ((1+sqrt(5))/2)^3 * exp(1 - 2/(1+sqrt(5))).
Equals limit n->infinity (A066399(n)/n!)^(1/n).
Equals limit n->infinity (A239761(n)/n!)^(1/n).
Equals limit n->infinity (A295183(n)/n!)^(1/n).
EXAMPLE
6.206527038397163731000740532186580585278052870847962022926...
MAPLE
evalf(((1+sqrt(5))/2)^3 * exp(1 - 2/(1+sqrt(5))), 120);
MATHEMATICA
RealDigits[GoldenRatio^3 * Exp[1 - 1/GoldenRatio], 10, 110][[1]]
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Vaclav Kotesovec, Nov 16 2017
STATUS
approved