
<u>A294968</u>: Some poor approximation of $\sqrt{\pi}$

Wolfdieter L a n g $^{\rm 1}$

In Martin Gardner [1] reference one finds the figure, redrawn below, showing three squares and a circle: the outer square circumscribing the circle of radius 1 (in some length units), the inner square inscribed in the circle (with sides parallel to the outer square) and the middle square. The length of \overline{AB} is obtained from $\sqrt{\overline{AC}^2 + \overline{CB}^2}$ with $\overline{AC} = \frac{1}{4}(3\sqrt{2}+2) \simeq 1.5607$ and $\overline{CB} = \frac{1}{4}(\sqrt{2}+2) \simeq 0.8536$. The result (in green) is $\overline{AB} = \frac{1}{2}\sqrt{7+4\sqrt{2}} = \underline{A294968} \simeq 1.77882$. This is not a good approximation to $\sqrt{\pi} = \underline{A002161} \simeq 1.77245$.

References

 Martin Gardner, Logic Machines and Diagrams, Second Ed., 1982, The Harvester Press, p. 26, Figure 15.

Keywords: Squaring the circle approximation

Concerned with OEIS sequences <u>A294968</u>.

¹ wolfdieter.lang@partner.kit.edu, http://www/kit.edu/~wl/