[go: up one dir, main page]

login
A294810
a(n) = Sum_{d|n} d^(n+2).
6
1, 17, 244, 4161, 78126, 1686434, 40353608, 1074791425, 31381236757, 1000244144722, 34522712143932, 1283997101947770, 51185893014090758, 2177986570740006274, 98526126098761952664, 4722384497336874434561, 239072435685151324847154
OFFSET
1,2
LINKS
FORMULA
G.f.: Sum_{k>0} k^(k+2)*x^k/(1-(k*x)^k).
L.g.f.: -log(Product_{k>=1} (1 - (k*x)^k)^k) = Sum_{k>=1} a(k)*x^k/k. - Seiichi Manyama, Jun 02 2019
MATHEMATICA
Table[Total[Divisors[n]^(n+2)], {n, 20}] (* Harvey P. Dale, Dec 23 2023 *)
PROG
(PARI) {a(n) = sigma(n, n+2)}
(PARI) N=66; x='x+O('x^N); Vec(sum(k=1, N, k^(k+2)*x^k/(1-(k*x)^k)))
(PARI) N=20; x='x+O('x^N); Vec(x*deriv(-log(prod(k=1, N, (1-(k*x)^k)^k)))) \\ Seiichi Manyama, Jun 02 2019
CROSSREFS
Sequence in context: A259347 A324358 A294608 * A362233 A214175 A309856
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Nov 09 2017
STATUS
approved