[go: up one dir, main page]

login
A293823
Number of integer-sided hexagons having perimeter n, modulo rotations but not reflections.
4
1, 1, 4, 10, 21, 41, 74, 126, 196, 314, 448, 672, 912, 1302, 1692, 2334, 2937, 3927, 4828, 6292, 7579, 9679, 11466, 14378, 16808, 20748, 23968, 29198, 33388, 40188, 45564, 54264, 61047, 72033, 80484, 94164, 104587, 121429, 134134, 154672, 170016, 194810, 213200, 242880, 264730, 300002
OFFSET
6,3
COMMENTS
Rotations are counted only once, but reflections are considered different. For a polygon to be nondegenerate, the longest side must be shorter than the sum of the remaining sides (equivalently, shorter than n/2).
A formula is given in Section 6 of the East and Niles article.
LINKS
James East, Ron Niles, Integer polygons of given perimeter, arXiv:1710.11245 [math.CO], 2017.
FORMULA
G.f.: x^6*(1 + x + 5*x^3 + 10*x^4 + 7*x^5 + 3*x^6 + 6*x^7 + 4*x^8 + 2*x^9) / ((1 - x)^6*(1 + x)^5*(1 - x + x^2)*(1 + x + x^2)^2) (conjectured). - Colin Barker, Nov 01 2017
EXAMPLE
For example, there are 10 rotation-classes of perimeter-9 hexagons: 411111, 321111, 312111, 311211, 311121, 311112, 222111, 221211, 221121, 212121. Note that 321111 and 311112 are reflections of each other, but these are not rotationally equivalent.
MATHEMATICA
T[n_, k_] := DivisorSum[GCD[n, k], EulerPhi[#]*Binomial[n/#, k/#] &]/n - Binomial[Floor[n/2], k - 1];
a[n_] := T[n, 6];
Table[a[n], {n, 6, 51}] (* Jean-François Alcover, Jan 29 2019, after Andrew Howroyd in A293819 *)
CROSSREFS
Column k=6 of A293819.
Cf. A293820 (polygons), A293822 (pentagons).
Sequence in context: A266355 A265053 A266371 * A266354 A121497 A132925
KEYWORD
nonn
AUTHOR
James East, Oct 16 2017
STATUS
approved