[go: up one dir, main page]

login
A293237
Decimal expansion of the escape probability for a random walk on the 3D fcc lattice.
3
7, 4, 3, 6, 8, 1, 7, 6, 3, 4, 9, 5, 3, 5, 1, 2, 2, 8, 9, 0, 4, 9, 6, 9, 8, 1, 9, 3, 6, 5, 3, 7, 6, 4, 8, 0, 5, 0, 9, 6, 0, 2, 2, 5, 0, 9, 0, 5, 1, 2, 1, 7, 0, 5, 6, 6, 2, 0, 4, 4, 3, 9, 3, 4, 0, 1, 9, 4, 3, 3, 5, 6, 7, 3, 5, 3, 7, 6, 6, 8, 2, 2, 9, 6, 1, 1, 0
OFFSET
0,1
COMMENTS
The return probability equals unity minus this constant. The expected number of visits to the origin is the inverse of this constant.
The escape probability for the hcp lattice also equals this constant. The escape probability for the diamond lattice is 3/4 times this constant.
FORMULA
Equals 2^(14/3)*Pi^4/(9*Gamma(1/3)^6).
EXAMPLE
0.74368176349535122890496981936537648...
MATHEMATICA
RealDigits[2^(14/3)*Pi^4/(9*Gamma[1/3]^6), 10, 100][[1]] (* G. C. Greubel, Oct 26 2018 *)
PROG
(PARI) 2^(14/3)*Pi^4/(9*gamma(1/3)^6) \\ Altug Alkan, Apr 09 2018
(Magma) SetDefaultRealField(RealField(100)); R:= RealField(); 2^(14/3)*Pi(R)^4/(9*Gamma(1/3)^6); // G. C. Greubel, Oct 26 2018
CROSSREFS
Sequence in context: A244817 A303612 A306555 * A316250 A199727 A255168
KEYWORD
nonn,cons
AUTHOR
Andrey Zabolotskiy, Oct 03 2017
STATUS
approved