[go: up one dir, main page]

login
A292791
The numerator of the real part of E(2n-1, i), where E(n, x) is the Euler polynomial.
2
-1, 7, -11, 199, -361, 8017, -63311, 10775663, -37120861, 2572609327, -54738555011, 11225458402189, -170606509547761, 24269619087650437, -998364772178081111, 1505193846304099711711, -10065529459831250937061, 2427246234079407797537347, -163790353311268893725697611
OFFSET
1,2
COMMENTS
The imaginary part is +-i.
The denominators are powers of two; A171977(n) = 2^A001511(n).
For E(2n, i) see A292792.
a(4n) == +-1 (mod 6),
a(4n+1) == 5 (mod 6),
a(4n+2) == 1 (mod 6),
a(4n+3) == 1 (mod 6).
Inspired by A291897.
LINKS
EXAMPLE
a(3) = -11 since E(5, i) = -11/2 + i.
MATHEMATICA
f[n_] := Numerator[ EulerE[2n -1, I] - I^(2n -1)]; Array[f, 19]
CROSSREFS
Cf. A292792.
Sequence in context: A154303 A128340 A106716 * A106818 A231329 A322950
KEYWORD
sign
AUTHOR
Robert G. Wilson v, Sep 23 2017
STATUS
approved