[go: up one dir, main page]

login
Expansion of Product_{k>=1} ((1 + k^k*x^k)/(1 - k^k*x^k)).
2

%I #12 Sep 16 2017 17:11:05

%S 1,2,10,72,670,7896,113572,1939028,38463550,869985586,22098989952,

%T 622728621984,19271496576612,649553583740576,23680212403186584,

%U 928276782505698920,38931911577966732814,1739307919812511213916,82457732209611432170734

%N Expansion of Product_{k>=1} ((1 + k^k*x^k)/(1 - k^k*x^k)).

%H Seiichi Manyama, <a href="/A292406/b292406.txt">Table of n, a(n) for n = 0..386</a>

%F Convolution of A023882 and A265949.

%F a(n) ~ 2*n^n * (1 + 2*exp(-1)/n + (exp(-1) + 10*exp(-2))/n^2). - _Vaclav Kotesovec_, Sep 16 2017

%t nmax = 20; CoefficientList[Series[Product[(1 + k^k*x^k)/(1 - k^k*x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Sep 16 2017 *)

%Y Cf. A023882, A265949, A292407.

%K nonn

%O 0,2

%A _Seiichi Manyama_, Sep 15 2017