[go: up one dir, main page]

login
A292146
Number of different convex quadrilaterals that can be formed from n congruent isosceles right triangles. Reflections are not counted as different.
2
0, 2, 2, 5, 2, 5, 3, 9, 2, 5, 2, 11, 2, 6, 4, 13, 3, 7, 2, 11, 4, 5, 3, 19, 2, 5, 4, 12, 2, 10, 3, 17, 4, 6, 4, 16, 2, 5, 4, 19, 3, 10, 2, 11, 6, 6, 3, 27, 3, 7, 4, 11, 2, 10, 4, 20, 4, 5, 2, 22, 2, 6, 7, 21, 4, 10, 2, 12, 4, 10, 3, 28, 3, 5, 6, 11, 4, 10
OFFSET
1,2
COMMENTS
Illustrated with other convex polyabolos in A245676.
EXAMPLE
For n=2, there is a square and a parallelogram.
PROG
(PARI) \\ here b is A100073
b(n) = if(n%2, floor(numdiv(n)/2), if(n%4, 0, floor(numdiv(n/4)/2)));
d(n) = my(t); sum(k=1, floor(sqrt((n-1)/2)), issquare(n+2*k^2, &t) && t>2*k);
a(n) = 2*b(n) + d(n) + if(n%2, 0, 2*numdiv(n/2) + b(n/2)) + if(n%4, 0, ceil(numdiv(n/4)/2)); \\ Andrew Howroyd, Sep 16 2017
CROSSREFS
Strictly less than A245676.
Sequence in context: A068066 A171889 A171868 * A334685 A340694 A101910
KEYWORD
nonn
AUTHOR
Douglas J. Durian, Sep 09 2017
EXTENSIONS
Terms a(33) and beyond from Andrew Howroyd, Sep 16 2017
STATUS
approved