OFFSET
0,2
COMMENTS
The number of standard Young tableaux of a fixed skew shape has a determinantal formula, the Jacobi-Trudi formula. It is rare when a family of skew shapes has a product formula for the number of standard Young tableaux. This product formula has independently been proved using P-Schur functions (by DeWitt) and using the Naruse hook-length formula for skew shapes (by Morales, Pak and Panova).
LINKS
E. A. DeWitt, Identities Relating Schur s-Functions and Q-Functions, Ph.D. thesis, University of Michigan, 2012, 73 pp.
A. H. Morales, I. Pak, G. Panova, Hook formulas for skew shapes III. Multivariate and product formulas, arXiv:1707.00931 [math.CO], 2017.
FORMULA
a(n) = (binomial(4*n,2)-n^2)!*b(n)^3*b(3*n)*c(n)*c(3*n)/(b(2*n)^3*c(2*n)^2*c(4*n)) where b(n) = 1!*2!*...*(n-1)! is the superfactorial A000178(n-1), and c(n) = 1!!*3!!*...*(2*n-3)!! is super doublefactorial A057863(n-1).
a(n) ~ sqrt(Pi) * 3^(9*n^2 - 3*n/2 - 1/24) * 7^(7*n^2 - 2*n + 1/2) * exp(7*n^2/2 - 2*n + 23/56) * n^(7*n^2 - 2*n + 7/8) / (A^(3/2) * 2^(33*n^2 - 6*n - 7/8)), where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, Apr 08 2021
EXAMPLE
a(1)=16 since there are 16 standard Young tableaux of skew shape 321/1 since this is the same as the number of standard Young tableaux of straight shape 321 given by the hook-length formula: 16 = 6!/(3^2*5).
MAPLE
b:=n->mul(factorial(i), i=1..n-1):
c:=n->mul(doublefactorial(2*i-1), i=1..n-1):
a:=n->factorial(binomial(4*n, 2)-n^2)*b(n)^3*b(3*n)*c(n)*c(3*n)/(b(2*n)^3*c(2*n)^2*c(4*n)):
seq(a(n), n=0..9);
PROG
(Sage)
def b(n): return mul([factorial(i) for i in range(1, n)])
def d(n): return factorial(n+1)/(2^((n+1)/2)*factorial((n+1)/2))
def c(n): return mul([d(2*i-1) for i in range(1, n)])
def a(n):
return factorial(binomial(4*n, 2)-n^2)*b(n)^3*b(3*n)*c(n)*c(3*n)/(b(2*n)^3*c(2*n)^2*c(4*n))
[a(n) for n in range(10)]
CROSSREFS
KEYWORD
nonn
AUTHOR
Alejandro H. Morales, Sep 05 2017
STATUS
approved