[go: up one dir, main page]

login
A291637
Carmichael numbers (A002997) that are super-Poulet numbers (A050217).
2
294409, 1299963601, 4215885697, 4562359201, 7629221377, 13079177569, 19742849041, 45983665729, 65700513721, 147523256371, 168003672409, 227959335001, 459814831561, 582561482161, 1042789205881, 1297472175451, 1544001719761, 2718557844481, 3253891093249, 4116931056001, 4226818060921, 4406163138721, 4764162536641, 4790779641001, 5419967134849, 7298963852041, 8470346587201
OFFSET
1,1
COMMENTS
Problem: are there infinitely many such numbers?
From Daniel Suteu, Sep 17 2020: (Start)
If we consider f(n) to be the smallest number in the sequence with n prime factors, then we have:
f(3) = 294409,
f(4) = 3018694485093841,
f(5) <= 521635331852681575100906881,
f(6) <= 2835402730651853232634509813787097410561,
f(7) <= 165784025660216242122027716057592895796242004385542265601. (End)
LINKS
CROSSREFS
Intersection of A178997 and A002997.
Sequence in context: A182206 A178997 A328938 * A206237 A236153 A023351
KEYWORD
nonn
AUTHOR
STATUS
approved