[go: up one dir, main page]

login
A290964
Numbers k such that (35*10^k - 593)/9 is prime.
1
3, 5, 6, 14, 24, 84, 87, 207, 734, 797, 1743, 2211, 3539, 5871, 5949, 6954, 8309, 10896, 12771, 22382, 35112, 38267, 69866, 121229, 125754, 133979
OFFSET
1,1
COMMENTS
For k > 1, numbers k such that the digit 3 followed by k-2 occurrences of the digit 8 followed by the digits 23 is prime (see Example section).
a(27) > 2*10^5.
EXAMPLE
5 is in this sequence because (35*10^5 - 593)/9 = 388823 is prime.
Initial terms and associated primes:
a(1) = 3, 3823;
a(2) = 5, 388823;
a(3) = 6, 3888823;
a(4) = 14; 388888888888823;
a(5) = 24, 3888888888888888888888823; etc.
MATHEMATICA
Select[Range[2, 100000], PrimeQ[(35*10^# - 593)/9] &]
PROG
(PARI) isok(n) = ispseudoprime((35*10^n - 593)/9) \\ Altug Alkan, Aug 15 2017
KEYWORD
nonn,more,hard
AUTHOR
Robert Price, Aug 15 2017
EXTENSIONS
a(24)-a(26) from Robert Price, Jul 18 2018
STATUS
approved