[go: up one dir, main page]

login
A290807
Number of partitions of n into Pell parts (A000129).
2
1, 1, 2, 2, 3, 4, 5, 6, 7, 8, 10, 11, 14, 15, 18, 20, 23, 26, 29, 32, 36, 39, 44, 47, 53, 57, 63, 68, 74, 81, 88, 95, 103, 110, 120, 128, 139, 148, 159, 170, 182, 195, 208, 221, 236, 250, 267, 282, 300, 317, 336, 355, 375, 396, 418, 440, 464, 487, 514, 539, 568, 595, 625, 655, 687, 720, 754, 788
OFFSET
0,3
FORMULA
G.f.: Product_{k>=1} 1/(1 - x^A000129(k)).
EXAMPLE
a(5) = 4 because we have [5], [2, 2, 1], [2, 1, 1, 1] and [1, 1, 1, 1, 1].
MATHEMATICA
CoefficientList[Series[Product[1/(1 - x^Fibonacci[k, 2]), {k, 1, 15}], {x, 0, 67}], x]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Aug 11 2017
STATUS
approved