[go: up one dir, main page]

login
A290746
Total number of distinct Lyndon factors appearing in all words of length n over an alphabet of size 2.
2
2, 9, 30, 87, 234, 597, 1470, 3522, 8264, 19067, 43398, 97659, 217674, 481221, 1056370, 2304676, 5000934, 10799564, 23222114, 49742577, 106181710, 225947089, 479426238, 1014615466, 2142099088, 4512515283, 9486635788, 19906068415, 41696243298, 87196489799
OFFSET
1,1
LINKS
Amy Glen, Jamie Simpson, W. F. Smyth, Counting Lyndon Factors, Electronic Journal of Combinatorics 24(3) (2017), #P3.28.
PROG
(PARI) Inner(m, s)=d=divisors(m); sum(i=1, length(d), moebius(m/d[i])*s^d[i]);
Lyndon(s, n) = sum(m=1, n, (n-m+1)/m * s^(n-m) * Inner(m, s));
vector(100, i, Lyndon(2, i)) \\ Lars Blomberg, Aug 12 2017
CROSSREFS
Sequence in context: A372152 A056778 A177111 * A268586 A056288 A261174
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Aug 11 2017
EXTENSIONS
a(11)-a(33) from Lars Blomberg, Aug 12 2017
STATUS
approved