[go: up one dir, main page]

login
A289536
Numbers k such that (4*10^k - 91)/3 is prime.
0
2, 3, 5, 10, 13, 14, 22, 31, 47, 57, 64, 71, 86, 911, 1012, 1855, 2111, 4920, 5838, 9238, 185221, 292619
OFFSET
1,1
COMMENTS
For k > 1, numbers k such that the digit 1 followed by k-2 occurrences of the digit 3 followed by the digits 03 is prime (see Example section).
a(23) > 3*10^5.
EXAMPLE
3 is in this sequence because (4*10^3 - 91)/3 = 1303 is prime.
Initial terms and associated primes:
a(1) = 2, 103;
a(2) = 3, 1303;
a(3) = 5, 133303;
a(4) = 10, 13333333303;
a(5) = 13, 13333333333303; etc.
MATHEMATICA
Select[Range[2, 100000], PrimeQ[(4*10^# - 91)/3] &]
PROG
(PARI) isok(k) = ispseudoprime((4*10^k - 91)/3); \\ Altug Alkan, Mar 27 2018
KEYWORD
nonn,more,hard
AUTHOR
Robert Price, Jul 07 2017
EXTENSIONS
a(21) from Robert Price, Mar 27 2018
a(22) from Robert Price, Jul 02 2023
STATUS
approved