[go: up one dir, main page]

login
A289246
Coefficients in the expansion of 1/Sum_{k >= 0} ([r*(k + 1)] + [s*(k + 1)]) * (-x)^k, where [ ] = floor, r = (1+sqrt(5))/2, s = 1/r.
0
1, 4, 11, 32, 94, 272, 786, 2272, 6564, 18962, 54780, 158254, 457174, 1320712, 3815354, 11022024, 31841080, 91984410, 265730044, 767656774, 2217652596, 6406486864, 18507440702, 53465396640, 154454021166, 446195972602, 1288997492332, 3723732703246
OFFSET
0,2
COMMENTS
Conjecture: the sequence is strictly increasing.
FORMULA
G.f.: 1/Sum_{k >= 0} ([r*(k + 1)] + [s*(k + 1)]) * (-x)^k, where [ ] = floor, r = (1+sqrt(5))/2, s = 1/r.
MATHEMATICA
r = GoldenRatio; s = 1/GoldenRatio;
CoefficientList[Series[1/Sum[(Floor[r*(k + 1)] + Floor[s*(k + 1)]) (-x)^k, {k, 0, 1000}], {x, 0, 50}], x]
CROSSREFS
Cf. A078140.
Sequence in context: A052545 A183114 A183119 * A199109 A025268 A178520
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Aug 09 2017
STATUS
approved