[go: up one dir, main page]

login
A289170
Number of dominating sets in the n X n white bishop graph.
7
3, 11, 201, 3413, 233727, 15544607, 4103802933, 1069035156713, 1107896230202475, 1142044772648964275, 4697484584102406799521, 19284763179499969013836925, 316392839278535985537956881623, 5187559573137612606140331666573383
OFFSET
2,1
LINKS
Eric Weisstein's World of Mathematics, Dominating Set
Eric Weisstein's World of Mathematics, White Bishop Graph
PROG
(PARI)
Collect(sig, v, r, x)={forstep(r=r, 1, -1, my(w=sig[r]+1); v=vector(#v, k, sum(j=1, k, binomial(#v-j, k-j)*v[j]*x^(k-j)*(1+x)^(w-#v+j-1))-v[k])); v[#v]}
DomSetCount(sig, x)={my(v=[1]); my(total=Collect(sig, v, #sig, x)); forstep(r=#sig, 1, -1, my(w=sig[r]+1); total+=Collect(sig, vector(w, k, if(k<=#v, v[k])), r-1, x); v=vector(w, k, sum(j=1, min(k, #v), binomial(w-j, k-j)*v[j]*x^(k-j)*(1+x)^(j-1)))); total}
Bishop(n, white)=vector(n-if(white, n%2, 1-n%2), i, n-i+if(white, 1-i%2, i%2));
a(n)=DomSetCount(Bishop(n, 1), 1); \\ Andrew Howroyd, Nov 05 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Eric W. Weisstein, Jun 26 2017
EXTENSIONS
Terms a(8) and beyond from Andrew Howroyd, Nov 05 2017
STATUS
approved