OFFSET
0,1
COMMENTS
Conjecture: a(n) is the number of letters (0's and 1's) in the n-th iterate of the mapping 00->0010, 01->011, 10->000, starting with 00; see A289104.
LINKS
Clark Kimberling, Table of n, a(n) for n = 0..3000
Index entries for linear recurrences with constant coefficients, signature (2, 0, -1).
FORMULA
a(n) = 2*a(n-1) - a(n-3) for n >= 5, a(0) = 2, a(1) = 4, a(2) = 7, a(3) = 12, a(4) = 22.
G.f.: (2 - x^2 + 2*x^4)/(1 - 2*x + x^3).
a(n) = -3 + 2^(-1-n)*sqrt(5)*(-(1-sqrt(5))^(1 + n) + (1+sqrt(5))^(1+n)) for n>1. - Colin Barker, Jun 28 2017
MATHEMATICA
Join[{2, 4}, LinearRecurrence[{2, 0, -1}, {7, 12, 22}, 40]]
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Jun 28 2017
STATUS
approved