[go: up one dir, main page]

login
A288908
Primes p whose distance from next prime and from previous prime is greater than log(p).
4
5, 7, 23, 37, 47, 53, 89, 157, 173, 211, 251, 257, 263, 293, 331, 337, 359, 367, 373, 389, 409, 479, 631, 691, 701, 709, 719, 787, 797, 839, 919, 929, 1163, 1171, 1201, 1249, 1259, 1381, 1399, 1409, 1471, 1511, 1523, 1531, 1637, 1709, 1733, 1801, 1811, 1823
OFFSET
1,1
COMMENTS
Primes preceded and followed by larger-than-average prime gaps (see link), then included in A082885.
LINKS
FORMULA
A151799(a(n)) + log(a(n)) < a(n) < A151800(a(n)) - log(a(n)).
EXAMPLE
n = 5 is a term because 3 + log(5) < 5 < 7 - log(5).
n = 11 is not a term because 13 - 11 < log(11) = 2.39...
MATHEMATICA
Select[Prime@ Range[2, 300], Min@ Abs[# - NextPrime[#, {-1, 1}]] > Log[#] &] (* Giovanni Resta, Jun 19 2017 *)
PROG
(Sage) [n for n in prime_range(3, 2000) if next_prime(n)-n>log(n) and n-previous_prime(n)>log(n)]
(Magma) f:=func<p|Abs(p-NextPrime(p)) gt Log(p) and Abs(p-PreviousPrime(p)) gt Log(p)>; [p:p in PrimesInInterval(3, 2000)|f(p)]; // Marius A. Burtea, Dec 19 2019
KEYWORD
nonn
AUTHOR
Giuseppe Coppoletta, Jun 19 2017
STATUS
approved