[go: up one dir, main page]

login
A288791
Number of blocks of size >= nine in all set partitions of n.
2
1, 11, 122, 1245, 12325, 121136, 1195147, 11915997, 120572790, 1241499241, 13030331671, 139549798524, 1525923634907, 17041290249637, 194394900237176, 2264977282222371, 26951265841776186, 327445918493429897, 4060993235341162405, 51396034231430455550
OFFSET
9,2
LINKS
FORMULA
a(n) = Bell(n+1) - Sum_{j=0..8} binomial(n,j) * Bell(n-j).
a(n) = Sum_{j=0..n-9} binomial(n,j) * Bell(j).
E.g.f.: (exp(x) - Sum_{k=0..8} x^k/k!) * exp(exp(x) - 1). - Ilya Gutkovskiy, Jun 26 2022
MAPLE
b:= proc(n) option remember; `if`(n=0, 1, add(
b(n-j)*binomial(n-1, j-1), j=1..n))
end:
g:= proc(n, k) option remember; `if`(n<k, 0,
g(n, k+1) +binomial(n, k)*b(n-k))
end:
a:= n-> g(n, 9):
seq(a(n), n=9..30);
MATHEMATICA
Table[Sum[Binomial[n, j] BellB[j], {j, 0, n - 9}], {n, 9, 30}] (* Indranil Ghosh, Jul 06 2017 *)
PROG
(Python)
from sympy import bell, binomial
def a(n): return sum([binomial(n, j)*bell(j) for j in range(n - 8)])
print([a(n) for n in range(9, 31)]) # Indranil Ghosh, Jul 06 2017
CROSSREFS
Column k=9 of A283424.
Cf. A000110.
Sequence in context: A368114 A293805 A358697 * A049666 A163462 A334000
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jun 15 2017
STATUS
approved