[go: up one dir, main page]

login
A288180
Number of intersection points formed by drawing the line segments connecting any two lattice points of an n X m convex lattice polygon written as triangle T(n,m), n >= 1, 1 <= m <= n.
7
5, 13, 37, 35, 121, 353, 75, 265, 771, 1761, 159, 587, 1755, 4039, 8917, 275, 1019, 3075, 7035, 15419, 26773, 477, 1797, 5469, 12495, 27229, 47685, 84497, 755, 2823, 8693, 19831, 43333, 76357, 135075, 215545, 1163, 4369, 13301, 30333, 66699, 117719, 207643, 331233, 508613
OFFSET
1,1
COMMENTS
If more than two lines intersect in the same point, only one intersection is counted.
REFERENCES
For references and links see A288177.
EXAMPLE
Triangle starts with:
n=1: 5,
n=2: 13, 37,
n=3: 35, 121, 353,
n=4: 75, 265, 771, 1761,
n=5: 159, 587, 1755, 4039, 8917,
n=6: 275, 1019, 3075, 7035, 15419, 26773,
n=7: 477, 1797, 5469, 12495, 27229, 47685, 84497,
n=8: 755, 2823, 8693, 19831, 43333, 76357, 135075, 215545,
n=9: 1163, 4369, 13301, 30333, 66699, 117719, 207643, 331233, 508613,
...
CROSSREFS
For column 2 see A333279, A333280, A333281.
The main diagonal T(n,n) is A343993.
Sequence in context: A266102 A332599 A331453 * A333284 A141408 A238460
KEYWORD
nonn,tabl
AUTHOR
Hugo Pfoertner, Jun 06 2017
EXTENSIONS
Corrected and extended by Hugo Pfoertner, Jul 20 2017
STATUS
approved