[go: up one dir, main page]

login
A286180
Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of (Product_{j>0} (1 + x^j) * (1 - x^(2*j)))^k in powers of x.
9
1, 1, 0, 1, 1, 0, 1, 2, 0, 0, 1, 3, 1, 1, 0, 1, 4, 3, 2, 0, 0, 1, 5, 6, 4, 2, 0, 0, 1, 6, 10, 8, 6, 0, 1, 0, 1, 7, 15, 15, 13, 3, 3, 0, 0, 1, 8, 21, 26, 25, 12, 6, 2, 0, 0, 1, 9, 28, 42, 45, 31, 14, 9, 0, 0, 0, 1, 10, 36, 64, 77, 66, 35, 24, 3, 2, 1, 0, 1, 11, 45
OFFSET
0,8
COMMENTS
A(n, k) is the number of ways of writing n as the sum of k triangular numbers.
LINKS
FORMULA
G.f. of column k: (Product_{j>0} (1 + x^j) * (1 - x^(2*j)))^k.
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, ...
0, 0, 1, 3, 6, 10, ...
0, 1, 2, 4, 8, 15, ...
0, 0, 2, 6, 13, 25, ...
MATHEMATICA
Table[Function[k, SeriesCoefficient[Product[(1 + x^i) (1 - x^(2 i)), {i, Infinity}]^k, {x, 0, n}]][j - n], {j, 0, 12}, {n, 0, j}] // Flatten (* Michael De Vlieger, May 07 2017 *)
CROSSREFS
Main diagonal gives A106337.
Sequence in context: A290975 A367145 A291678 * A291701 A286352 A332898
KEYWORD
nonn,tabl
AUTHOR
Seiichi Manyama, May 07 2017
STATUS
approved