[go: up one dir, main page]

login
A286071
Number of permutations of [n] with nonincreasing cycle sizes.
8
1, 1, 2, 5, 19, 85, 496, 3229, 25117, 215225, 2100430, 22187281, 261228199, 3284651245, 45163266604, 659277401525, 10380194835601, 172251467909809, 3057368096689690, 56867779157145769, 1122474190194034555, 23137433884903034501, 502874858021076645784
OFFSET
0,3
COMMENTS
Each cycle is written with the smallest element first and cycles are arranged in increasing order of their first elements.
a(n) is even if and only if n in { A016825 }.
LINKS
Wikipedia, Permutation
EXAMPLE
a(3) = 5: (123), (132), (12)(3), (13)(2), (1)(2)(3).
a(4) = 19: (1234), (1243), (1324), (1342), (1423), (1432), (123)(4), (132)(4), (124)(3), (142)(3), (12)(34), (12)(3)(4), (134)(2), (143)(2), (13)(24), (13)(2)(4), (14)(23), (14)(2)(3), (1)(2)(3)(4).
MAPLE
b:= proc(n, i) option remember; `if`(n=0, 1, add((j-1)!*
b(n-j, j)*binomial(n-1, j-1), j=1..min(n, i)))
end:
a:= n-> b(n$2):
seq(a(n), n=0..30);
MATHEMATICA
b[n_, i_] := b[n, i] = If[n == 0, 1, Sum[(j - 1)!*b[n - j, j]*Binomial[n - 1, j - 1], {j, 1, Min[n, i]}]];
a[n_] := b[n, n];
Table[a[n], {n, 0, 30}] (* Jean-François Alcover, May 24 2018, translated from Maple *)
KEYWORD
nonn
AUTHOR
Alois P. Heinz, May 01 2017
STATUS
approved