OFFSET
0,3
COMMENTS
In general, if m > 1 and g.f. = Product_{k>=1} (1 + x^k)^k / (1 + x^(m*k))^(m*k), then a(n, m) ~ exp(2^(-4/3) * 3^(4/3) * (1-1/m)^(1/3) * Zeta(3)^(1/3) * n^(2/3)) * 2^(m/12 - 3/4) * (1-1/m)^(1/6) * Zeta(3)^(1/6) / (3^(1/3) * sqrt(Pi) * n^(2/3)).
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 0..1000 from Vaclav Kotesovec)
FORMULA
a(n) ~ exp(2^(-2/3) * 3^(4/3) * 5^(-1/3) * Zeta(3)^(1/3) * n^(2/3)) * Zeta(3)^(1/6) / (3^(1/3) * 5^(1/6) * sqrt(Pi) * n^(2/3)).
MATHEMATICA
nmax = 50; CoefficientList[Series[Product[(1+x^k)^k/(1+x^(5*k))^(5*k), {k, 1, nmax}], {x, 0, nmax}], x]
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Apr 16 2017
STATUS
approved