OFFSET
1,5
COMMENTS
Sequence represents e(n, 1) where e(n, i) = (Sum_{k=0..n-1} A006949(k)) mod (n*i).
See also alternative scatterplot and graph of this sequence in Links section.
LINKS
Altug Alkan, Table of n, a(n) for n = 1..20000
Altug Alkan, Alternative graph of A284214
Altug Alkan, Alternative scatterplot of A284214
Altug Alkan, Illustration of residue classes modulo 4
FORMULA
a(n) = (Sum_{k=0..n-1} A006949(k)) mod n.
EXAMPLE
a(6) = 3 because Sum_{k=0..5} A006949(k) = 1 + 1 + 1 + 2 + 2 + 2 = 9 and remainder when 9 is divided by 6 is 3.
MATHEMATICA
a[0] = a[1] = a[2] = 1; a[n_] := a[n] = a[n - 1 - a[n - 1]] + a[n - 2 - a[n - 2]]; MapIndexed[Mod[#1, First@ #2] &, Accumulate@ Table[a@ n, {n, 0, 79}]] (* Michael De Vlieger, Mar 24 2017 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Altug Alkan, Mar 23 2017
STATUS
approved