[go: up one dir, main page]

login
A284151
Sum_{d|n, d=1 or 6 mod 7} d.
3
1, 1, 1, 1, 1, 7, 1, 9, 1, 1, 1, 7, 14, 1, 16, 9, 1, 7, 1, 21, 1, 23, 1, 15, 1, 14, 28, 1, 30, 22, 1, 9, 1, 35, 1, 43, 1, 1, 14, 29, 42, 7, 44, 23, 16, 1, 1, 63, 1, 51, 1, 14, 1, 34, 56, 9, 58, 30, 1, 42, 1, 63, 1, 73, 14, 29, 1, 35, 70, 1, 72, 51, 1, 1, 16, 77, 1
OFFSET
1,6
LINKS
FORMULA
a(n) = A284099(n) + A284105(n). - R. J. Mathar, Mar 21 2017
MATHEMATICA
Table[Sum[If[Mod[d, 7] == 1 || Mod[d, 7]==6, d, 0], {d, Divisors[n]}], {n, 80}] (* Indranil Ghosh, Mar 21 2017 *)
PROG
(PARI) for(n=1, 80, print1(sumdiv(n, d, if(d%7==1 || d%7==6, d, 0)), ", ")) \\ Indranil Ghosh, Mar 21 2017
(Python)
from sympy import divisors
def a(n): return sum([d for d in divisors(n) if d%7==1 or d%7 == 6]) # Indranil Ghosh, Mar 21 2017
CROSSREFS
Cf. Sum_{d|n, d=1 or k-1 mod k} d: A046913 (k=3), A000593 (k=4), A284150 (k=5), A186099 (k=6), this sequence (k=7).
Sequence in context: A019661 A200130 A298751 * A370467 A164003 A280704
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Mar 21 2017
STATUS
approved