[go: up one dir, main page]

login
A283392
Integers m of the form m = 3*p + 5*q = 5*r + 7*s where {p,q} and {r,s} are pairs of consecutive primes.
2
50, 146, 866, 2162, 4178, 8362, 14372, 17138, 19094, 22504, 25346, 26764, 27544, 35074, 42634, 45218, 54184, 59554, 63484, 69812, 70562, 90904, 107252, 111004, 121106, 121682, 125138, 126764, 127454, 131596, 132464
OFFSET
1,1
EXAMPLE
m = 50, {p,q} = {5,7}, {r,s} = {3,5}, 50 = 3*5 + 5*7 = 5*3 + 7*5.
m = 146 = 3*17 + 5*19 = 5*11 + 7*13,
m = 866 = 3*107 + 5*109 = 5*71 + 7*73.
MATHEMATICA
s1=Prime[Range[2, 10000]]; s2=Prime[Range[3, 10001]];
s3=3*s1+5*s2; s5=5*s1+7*s2; Intersection[s3, s5]
CROSSREFS
Sequence in context: A200881 A235942 A093300 * A261343 A104152 A044382
KEYWORD
nonn
AUTHOR
Zak Seidov, Mar 07 2017
STATUS
approved