OFFSET
1,1
COMMENTS
For n > 1, we observe that a(n) is semiprime of the form a(n) = 2p with p = 3, 5, 11, 17, 71, 89, 107, 191, 431, 701, 1151, 2591, 4549, 7699, 8699, 10589, 11801, ... Except for the primes 3, 4549 and 7699 in the first 35 terms (from 6 until 3909046), the primes p are of the form 6k - 1.
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..289 (terms below 10^10)
EXAMPLE
MAPLE
with(numtheory):
for n from 2 to 200000 do:
x:=divisors(n):n0:=nops(x):y:=factorset(n):n1:=nops(y):
s0:=sum(‘x[i]’, ‘i’=1..n0):s1:=sum(‘y[i]’, ‘i’=1..n1):
if phi(s1)=phi(s0)
then
print(n):
else
fi:
od:
MATHEMATICA
Select[Range[10^6], EulerPhi@ DivisorSigma[1, #] == EulerPhi[Total@ FactorInteger[#][[All, 1]]] &] (* Michael De Vlieger, Feb 17 2017 *)
PROG
(PARI) isok(n) = my(f=factor(n)); eulerphi(sigma(n)) == eulerphi(vecsum(f[, 1])); \\ Michel Marcus, Feb 25 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Michel Lagneau, Feb 17 2017
STATUS
approved