[go: up one dir, main page]

login
A282047
Coefficients in q-expansion of E_4^4*E_6, where E_4 and E_6 are respectively the Eisenstein series A004009 and A013973.
5
1, 456, -146232, -133082976, -32170154808, -3378441902544, -155862776255328, -3969266446940352, -65538944782146360, -777506848190979672, -7105808014591457232, -52584752452485047328, -326903300701760852832, -1755591608260377411216
OFFSET
0,2
REFERENCES
G. E. Andrews and B. C. Berndt, Ramanujan's lost notebook, Part III, Springer, New York, 2012, See p. 208.
LINKS
FORMULA
-552 * A013969(n) = 77683 * a(n) - 35424000 * A037946(n) for n > 0.
MATHEMATICA
terms = 14;
E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
E4[x]^4*E6[x] + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 26 2018 *)
CROSSREFS
Cf. A004009 (E_4), A013973 (E_6), A013974 (E_4*E_6 = E_10), A058550 (E_4^2*E_6 = E_14), A282000 (E_4^3*E_6), this sequence (E_4^4*E_6), A282048 (E_4^5*E_6).
Sequence in context: A282101 A037945 A278731 * A278433 A278551 A278796
KEYWORD
sign
AUTHOR
Seiichi Manyama, Feb 05 2017
STATUS
approved