OFFSET
1,2
FORMULA
C(x)^2 - S(x)^2 = 1 and S'(x) = C(x)^6, where C(x) is described by A281432.
MATHEMATICA
terms = 20; max = 2 terms; se = (1/8)*((x*(5+3x^2))/(1+x^2)^2+3*ArcTan[x]) +O[x]^max; coes = CoefficientList[InverseSeries[se, x], x]*Range[0, max-1 ]!; Partition[coes, 2][[All, 2]] (* Jean-François Alcover, Mar 01 2017 *)
PROG
(PARI) {a(n) = my(S=x, C=1); for(i=1, n, S = intformal( C^6 +x*O(x^(2*n))); C = 1 + intformal( S*C^5 ) ); (2*n-1)!*polcoeff(S, 2*n-1)}
for(n=1, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 21 2017
STATUS
approved