Generalized Narayana Numbers DAVID CALLAN

Jan 16, 2017

Set

$$N_m(n,k) = \frac{m+1}{n+1} \binom{n+1}{k} \binom{n-m-1}{k-1}$$

for $m \ge 0$ and $0 \le k \le n-m$ with the usual binomial-coefficient convention that $\binom{a}{b} = 0$ for b < 0 except $\binom{-1}{-1} := 1$. For m = 0 this gives the usual Narayana numbers N(n,k) A001263, so let us call the $N_m(n,k)$ generalized Narayana numbers and say the N_m triangle is the triangle of *m*-th order Narayana numbers. Here is a table of values of $N_m(n,k)$ for small m, n, k.

$n \setminus k$	8 0	1 2	2 3	4		$n \setminus k$	0	1	2	3	4
0	1					1	1				
1	0	1				2	0	2			
2	0	1	1			3	0	2	3		
3	0	1 :	3 1			4	0	2	8	4	
4	0	1 (56	1		5	0	2	15	20	5
m = 0						m = 1					
$n \setminus k$	0 1	2	3	4		$n \setminus k$	0	1	2	3	4
$\frac{n \setminus k}{2}$	0 1 1	2	3	4	_	$\frac{n \setminus k}{3}$	0	1	2	3	4
$\begin{array}{c c}n\setminus k\\2\\3\end{array}$	0 1 1 0 3	2	3	4	-	$\frac{n \setminus k}{3}$	0 1 0	1	2	3	4
$\begin{array}{c}n\setminus k\\2\\3\\4\end{array}$	$ \begin{array}{ccc} 0 & 1 \\ 1 & & \\ 0 & 3 \\ 0 & 3 \end{array} $	2	3	4	-	$\frac{n \setminus k}{3}$ 4 5	0 1 0 0	1 4 4	2	3	4
$ \begin{array}{c c} n \setminus k \\ \hline 2 \\ 3 \\ 4 \\ 5 \\ \end{array} $	$ \begin{array}{cccc} 0 & 1 \\ 1 & & \\ 0 & 3 \\ 0 & 3 \\ 0 & 3 \end{array} $	2 6 15	3	4	-		0 1 0 0 0	$\frac{1}{4}$	2 10 24	3 20	4
$ \begin{array}{c c} n \setminus k \\ \hline 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ \end{array} $	0 1 1 3 0 3 0 3 0 3 0 3 0 3	2 6 15 27	3 10 45	4	-	$ \begin{array}{c} \underline{n \setminus k} \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \end{array} $	0 1 0 0 0 0	$\begin{array}{c} 1 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \end{array}$	2 10 24 42	3 20 84	4

Values of $N_m(n,k)$ for small m, n, k

Clearly, $N_m(n,k)$ is always nonnegative, and is an integer because $N_m(n,k) = \binom{n+1}{k} \binom{n-m-1}{k-1} - \binom{n}{k-1} \binom{n-m}{k}, \qquad (1)$ as a routine calculation shows.

Let $F_m(x,y) = \sum_{n \ge m, 0 \le k \le n-m} N_m(n,k) x^n y^k$ denote the generating function for the *m*-th order Narayana numbers. It is known [1, Ex, 6.36b] (but Stanley omits the initial 1) that $F_0(x,y) = 1 + xy + x^2(y+y^2) + x^3(y+3y^2+y^3) + \cdots$ is given by

$$F_0(x,y) = \frac{1 + x(1-y) - \sqrt{1 - 2x(1+y) + x^2(1-y)^2}}{2x}.$$
(2)

There is a combinatorial interpretation of the *m*-th order Narayana numbers due to Werner Schulte: $N_m(n,k)$ is the number of nonnegative lattice paths of *n* upsteps U = (1,1) and n - m downsteps D = (1,-1) with *k* peaks. (Nonnegative means the path never dips below the horizontal line through its initial point, and a peak is a *UD*. Clearly, such a path is the same as a Dyck path of semilength *n* whose last *m* steps are downsteps with the last *m* steps removed.) The interpretation can be established using the bijection from Dyck paths to parallelogram polyominoes that takes # peaks in path to width of polyomino [1, solution to Ex. 6.19ℓ , viewing the sequences of 1s and -1s as Dyck paths], and then using the Lindström-Gessel-Viennot theorem [2, search Lindstrom-Gessel-Viennot lemma] to count the resulting parallelogram polyominoes, viewed as a pair of nonintersecting lattice paths with given endpoints. The theorem counts them as a 2×2 determinant of binomial coefficients that evaluates to (1).

The generating function $F_m(x, y)$ is easily found using the symbolic method [3]—a nonnegative path that starts at the origin and ends at height m decomposes into m + 1Dyck paths connected by m upsteps—and is given by

$$F_m(x, y) = x^m F_0(x, y)^{m+1}$$
.

References

- Richard P. Stanley, *Enumerative Combinatorics* Vol. 2, Cambridge University Press, 1999. Exercise 6.19 and related material on Catalan numbers are available online at http://www-math.mit.edu/~rstan/ec/.
- [2] Wikipedia.
- [3] Philippe Flajolet and Robert Sedgewick, *Analytic Combinatorics*, Cambridge University Press, 2009.