Generalized Narayana Numbers DAVID CALLAN

Jan 16, 2017

Set

$$
N_m(n,k) = \frac{m+1}{n+1} \binom{n+1}{k} \binom{n-m-1}{k-1}
$$

for $m \geq 0$ and $0 \leq k \leq n-m$ with the usual binomial-coefficient convention that $\binom{a}{b}$ $\binom{a}{b} = 0$ for $b < 0$ except $\binom{-1}{-1} := 1$. For $m = 0$ this gives the usual Narayana numbers $N(n, k)$ [A001263,](http://oeis.org/A001263) so let us call the $N_m(n, k)$ generalized Narayana numbers and say the N_m triangle is the triangle of m-th order Narayana numbers. Here is a table of values of $N_m(n, k)$ for small m, n, k .

Values of $N_m(n, k)$ for small m, n, k

Clearly, $N_m(n, k)$ is always nonnegative, and is an integer because $N_m(n,k) = \binom{n+1}{k}$ k $\binom{n-m-1}{n}$ $k-1$ $\overline{ }$ − $\binom{n}{n}$ $k-1$ $\binom{n-m}{m}$ k $\overline{ }$ (1) as a routine calculation shows.

Let $F_m(x, y) = \sum_{n \ge m, 0 \le k \le n-m} N_m(n, k) x^n y^k$ denote the generating function for the m-th order Narayana numbers. It is known $[1, Ex, 6.36b]$ (but Stanley omits the initial 1) that $F_0(x, y) = 1 + xy + x^2(y + y^2) + x^3(y + 3y^2 + y^3) + \cdots$ is given by

$$
F_0(x,y) = \frac{1 + x(1 - y) - \sqrt{1 - 2x(1 + y) + x^2(1 - y)^2}}{2x}.
$$
 (2)

There is a combinatorial interpretation of the m-th order Narayana numbers due to Werner Schulte: $N_m(n, k)$ is the number of nonnegative lattice paths of n upsteps $U = (1, 1)$ and $n - m$ downsteps $D = (1, -1)$ with k peaks. (Nonnegative means the path never dips below the horizontal line through its initial point, and a peak is a UD. Clearly, such a path is the same as a Dyck path of semilength n whose last m steps are downsteps with the last m steps removed.) The interpretation can be established using the bijection from Dyck paths to parallelogram polyominoes that takes $#$ peaks in path to width of polyomino [\[1,](#page-1-0) solution to Ex. 6.19 ℓ , viewing the sequences of 1s and -1 s as Dyck paths \vert , and then using the Lindström-Gessel-Viennot theorem \vert 2, search Lindstrom-Gessel-Viennot lemma] to count the resulting parallelogram polyominoes, viewed as a pair of nonintersecting lattice paths with given endpoints. The theorem counts them as a 2×2 determinant of binomial coefficients that evaluates to [\(1\)](#page-0-0).

The generating function $F_m(x, y)$ is easily found using the symbolic method [\[3\]](#page-1-2)—a nonnegative path that starts at the origin and ends at height m decomposes into $m + 1$ Dyck paths connected by m upsteps—and is given by

$$
F_m(x, y) = x^m F_0(x, y)^{m+1}.
$$

References

- [1] Richard P. Stanley, Enumerative Combinatorics Vol. 2, Cambridge University Press, 1999. Exercise 6.19 and related material on Catalan numbers are available online at [http://www-math.mit.edu/](http://www-math.mit.edu/~rstan/ec/)~rstan/ec/.
- [2] [Wikipedia.](https://en.wikipedia.org/)
- [3] Philippe Flajolet and Robert Sedgewick, [Analytic Combinatorics](http://algo.inria.fr/flajolet/Publications/AnaCombi/book.pdf), Cambridge University Press, 2009.