[go: up one dir, main page]

login
A281070
a(n) is the numerator of 6 * Sum_{k=0..n} ((k+1)/(n-k+1)^2) * (Catalan(k)/(2^(2*k+1)))^2.
3
3, 9, 109, 1037, 91027, 1540981, 447810157, 147053171, 503445581741, 16337573574319, 88973047698967, 3588920671411951, 2314594755016141847, 20685050199210758743, 2160689714871889935101, 121435710295138581181033, 16427863327419202412927713
OFFSET
0,1
COMMENTS
The series a(n)/A280723(n) is absolutely convergent to Pi.
MATHEMATICA
a[n_]=6(Sum[(1/(n-k+1)^2)((CatalanNumber[k])/(2^(2k+1)))^2(k+1), {k, 0, n}]); Numerator /@a/@ Range[0, 10]
CROSSREFS
Cf. A000108 (Catalan), A280723 (denominators).
Sequence in context: A289070 A053914 A018757 * A261245 A177243 A127100
KEYWORD
nonn,frac
AUTHOR
Ralf Steiner, Jan 14 2017
STATUS
approved