[go: up one dir, main page]

login
A280970
Number of comparisons required to sort all permutations of [n] by MTF sort.
2
0, 0, 3, 25, 208, 1928, 20328, 244536, 3347328, 51858432, 902874240, 17523066240, 375931514880, 8842225904640, 226294152053760, 6258916573056000, 185978410684416000, 5906514709831680000, 199606607730561024000, 7150186413112651776000, 270578540735613960192000
OFFSET
0,3
COMMENTS
MTF sort is an (inefficient) sorting algorithm: the first element that is smaller than its predecessor is moved to front repeatedly until the sequence is sorted. Comparisons of adjacent elements always begin at the front and are continued until the last or the next element to be moved is found.
FORMULA
a(n) = a(n-1)*n + (n-1)! * (2^n+(n-3)*n/2) for n>1, a(0) = a(1) = 0.
a(n) ~ (n-1)! * 2^(n+1). - Vaclav Kotesovec, Jan 12 2017
MAPLE
a:= proc(n) option remember;
`if`(n<2, 0, a(n-1)*n + (n-1)! * (2^n+(n-3)*n/2))
end:
seq(a(n), n=0..20);
# second Maple program:
a:= proc(n) option remember;
`if`(n<7, [0$2, 3, 25, 208, 1928, 20328][n+1],
((4*n^2-23*n+2)*a(n-1)-(5*n^3-28*n^2-n+54)*a(n-2)
+(2*n-4)*(n^3-2*n^2-24*n+52)*a(n-3)
-(4*n-8)*(n-4)*(n-3)^2*a(n-4))/(n-6))
end:
seq(a(n), n=0..20);
MATHEMATICA
Flatten[{0, Simplify[Table[n!*(n*(n-5)/4 - Pi*I - 1 - 2^(1+n)*LerchPhi[2, 1, 1+n]) , {n, 1, 20}]]}] (* Vaclav Kotesovec, Jan 12 2017 *)
CROSSREFS
Cf. A279683.
Sequence in context: A289164 A037783 A037587 * A222052 A230718 A112240
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jan 11 2017
STATUS
approved