[go: up one dir, main page]

login
A280666
Expansion of eta(q)^6/eta(q^6) in powers of q.
1
1, -6, 9, 10, -30, 0, 12, 36, 9, -60, -12, -54, 62, 120, 18, -72, -102, -54, -36, 156, 108, 48, -192, -108, 156, 78, 126, -206, -324, -72, 240, 324, 225, -168, -276, -180, 132, 264, 72, -144, -588, -198, 240, 804, 270, -288, -312, -324, 206, 486, 225, -528
OFFSET
0,2
LINKS
FORMULA
G.f.: Product_{n>0} (1-x^n)^6/(1-x^(6*n)).
Euler transform of period 6 sequence [ -6, -6, -6, -6, -6, -5, ...].
MAPLE
with(numtheory):
a:= proc(n) option remember; `if`(n=0, 1, add(add(d*
`if`(irem(d, 6)=0, -5, -6), d=divisors(j))*a(n-j), j=1..n)/n)
end:
seq(a(n), n=0..70); # Alois P. Heinz, Jan 07 2017
MATHEMATICA
QP = QPochhammer; QP[x]^6/QP[x^6] + O[x]^70 // CoefficientList[#, x]& (* Jean-François Alcover, Mar 25 2017 *)
PROG
(PARI) q='q+O('q^66); Vec( eta(q)^6/eta(q^6) ) \\ Joerg Arndt, Mar 25 2017
CROSSREFS
Cf. A002448 (k=2), A005928 (k=3), A083703 (k=4), A109064 (k=5), this sequence (k=6), A160534 (k=7).
Sequence in context: A029843 A209941 A000729 * A282937 A106248 A132725
KEYWORD
sign
AUTHOR
Seiichi Manyama, Jan 07 2017
STATUS
approved