[go: up one dir, main page]

login
A280235
Constant appearing in the Nicolas-Robin bound for the divisor function.
3
1, 5, 3, 7, 9, 3, 9, 8, 6, 0, 6, 7, 5, 1, 2, 6, 1, 7, 4, 9, 5, 7, 9, 0, 8, 6, 0, 7, 3, 1, 2, 1, 2, 2, 1, 3, 6, 7, 4, 9, 8, 6, 3, 1, 0, 8, 4, 2, 5, 2, 1, 0, 7, 6, 2, 2, 1, 4, 5, 7, 2, 3, 5, 7, 9, 4, 3, 1, 1, 9, 6, 6, 9, 3, 3, 8, 3, 5, 1, 4, 1, 7, 0, 5, 4, 4, 7, 9, 3
OFFSET
1,2
COMMENTS
The number of divisors of n is at most 2^(k * log n/log log n) where k is this constant. Equality is attained precisely at n = 6983776800.
LINKS
J. L. Nicolas and G. Robin, Majorations explicites pour le nombre de diviseurs de N, Canadian Mathematical Bulletin 26 (1983), pp. 485-492.
EXAMPLE
1.53793986067512617495790860731212213674986310842521076221457235794311...
MATHEMATICA
L = Log[6983776800]; RealDigits[2 * Log[48] * Log[L] / L / Log[2], 10, 89][[1]] (* Indranil Ghosh, Mar 12 2017 *)
PROG
(PARI) L=log(6983776800); 2*log(48)*log(L)/L/log(2)
CROSSREFS
Cf. A217660.
Sequence in context: A109694 A259068 A219336 * A135765 A222598 A221470
KEYWORD
cons,nonn
AUTHOR
STATUS
approved