[go: up one dir, main page]

login
A279948
Expansion of (Sum_{k>=1} x^(prime(k)^2))^3.
0
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 3, 0, 0, 0, 0, 3, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 6, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 3, 0, 3, 0, 0, 6, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 6, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3
OFFSET
0,18
COMMENTS
Number of ordered ways of writing n as the sum of three squares of primes (A001248).
FORMULA
G.f.: (Sum_{k>=1} x^(prime(k)^2))^3.
EXAMPLE
a(22) = 3 because we have [4, 9, 9], [9, 4, 9] and [9, 9, 4].
MATHEMATICA
nmax = 125; CoefficientList[Series[(Sum[x^Prime[k]^2, {k, 1, nmax}])^3, {x, 0, nmax}], x]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Dec 24 2016
STATUS
approved