[go: up one dir, main page]

login
A279633
Coefficients in the expansion of ([s] + [2s]x + [3s]x^2 + ...)/([r] + [2r]x + [3r]x^2 + ...); [ ] = floor, r = e/2, s = r/(1-r).
1
3, 1, -3, 2, 3, -7, 1, 14, -16, -13, 45, -19, -70, 104, 38, -242, 162, 321, -636, -14, 1273, -1214, -1335, 3704, -970, -6387, 8154, 4682, -20708, 10944, 30309, -51241, -9990, 111177, -88723, -133479, 305883, -34310, -571978, 626110, 521149, -1747919, 674248
OFFSET
0,1
LINKS
FORMULA
G.f.: ([s] + [2s]x + [3s]x^2 + ...)/([r] + [2r]x + [3r]x^2 + ...); [ ] = floor, r = e/2, s = r/(1-r).
MATHEMATICA
z = 100;
r = E/2; f[x_] := f[x] = Sum[Floor[r*(k + 1)] x^k, {k, 0, z}];
s = r/(r - 1); g[x_] := g[x] = Sum[Floor[s*(k + 1)] x^k, {k, 0, z}]
CoefficientList[Series[g[x]/f[x], {x, 0, z}], x]
CROSSREFS
Sequence in context: A035456 A035664 A095246 * A126208 A287863 A126088
KEYWORD
sign,easy
AUTHOR
Clark Kimberling, Dec 18 2016
STATUS
approved