OFFSET
1,2
COMMENTS
Rationals a/b (lowest form) can be mapped 1-to-1 to a positive integer n where a/b is the n-th term of the triangular array A226314(n)/A054531(n). Consider two function of x, f_1 = ax-1 and f_2 = bx-1. Then by Schinzel's Hypothesis H there are infinite values of x such that f_1 and f_2 are simultaneously prime allowing a/b to be expressed using two primes p and q as a/b=(p+1)/(q+1).
By choosing the least x for generating p=f_1 and q=f_2 (see A278635) it is possible to find a unique prime rational p/q that maps to rational a/b. If n is the sequence index that selects the rational a/b from the triangular array A226314(n)/A054531(n), then a(n) selects the prime rationals p/q from the same array.
LINKS
Lance Fortnow, Counting the Rationals Quickly, Computational Complexity Weblog, Monday, March 01, 2004.
A. Schinzel and W. Sierpiński, Sur certaines hypothèses concernant les nombres premiers, Acta Arithmetica IV., 1957.
Wikipedia Schinzel's hypothesis H.
EXAMPLE
MATHEMATICA
func[{i_, j_}] := {j(j-1)/2+i->{j+(i-j)/GCD[i, j], j/GCD[i, j]}}; rfunc[{i_, j_}] := {{j+(i-j)/GCD[i, j], j/GCD[i, j]}->j(j-1)/2+i}; getx[{a_, b_}] := Module[{f1, f2, x}, If[a==b, {1, 1}, (f1=a*x-1; f2=b*x-1; x=1; While[(!PrimeQ[f1]||!PrimeQ[f2])&&x<10^5, x++]; If[x==10^5, Abort[], {f1, f2}])]]; assoc=Association@Flatten[Table[func[{a, b}], {b, 1000}, {a, b}], 1]; rassoc=Association@Flatten[Table[rfunc[{a, b}], {b, 1000}, {a, b}], 1]; Table[rassoc[getx[assoc[n]]], {n, 1, 100}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Frank M Jackson and Michael B Rees, Dec 10 2016
STATUS
approved