OFFSET
1,5
COMMENTS
A conjecture by Zhi-Wei Sun states that any rational number can be expressed as the sum of distinct unit fractions whose denominators are practical numbers. To prove this conjecture, David Eppstein (see link) used the fact that every natural number when repeatedly multiplied by 2 will eventually become practical.
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 1..5000
David Eppstein, Egyptian fractions with practical denominators, Nov 20, 2016
Zhi-Wei Sun, A conjecture on unit fractions involving primes, preprint, 2015.
EXAMPLE
a(11) = 3 because 11 * 2^3 = 88 is a practical number and 3 is the least power of 2 which when multiplied by 11 becomes practical.
MATHEMATICA
practicalQ[n_] := Module[{f, p, e, prod = 1, ok = True}, If[n < 1 ||(n > 1 && OddQ[n]), False, If[n == 1, True, f = FactorInteger[n]; {p, e} = Transpose[f]; Do[If[p[[i]] > 1 + DivisorSigma[1, prod], ok = False; Break[]]; prod = prod * p[[i]]^e[[i]], {i, Length[p]}]; ok]]]; Table[(m = n; k = 0; While[! practicalQ[m], m = 2 * m; k++]; k), {n, 100}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Frank M Jackson, Dec 04 2016
STATUS
approved