[go: up one dir, main page]

login
A279012
Expansion of Product_{k>=1} 1/(1 - x^(k*(5*k-3)/2)).
6
1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 7, 7, 7, 7, 8, 8, 9, 10, 11, 11, 11, 12, 12, 13, 14, 15, 15, 15, 16, 16, 17, 18, 19, 19, 20, 21, 22, 24, 25, 26, 26, 27, 28, 29, 31, 32, 33, 33, 34, 35, 37, 39, 41, 42, 43, 45, 46, 48, 50, 52, 53, 54, 56, 58, 60, 62, 64, 65, 67, 69, 72, 75, 78
OFFSET
0,8
COMMENTS
Number of partitions of n into nonzero heptagonal numbers (A000566).
LINKS
M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version]
M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
Eric Weisstein's World of Mathematics, Heptagonal Number
FORMULA
G.f.: Product_{k>=1} 1/(1 - x^(k*(5*k-3)/2)).
EXAMPLE
a(8) = 2 because we have [7, 1] and [1, 1, 1, 1, 1, 1, 1, 1].
MAPLE
h:= proc(n) option remember; `if`(n<1, 0, (t->
`if`(t*(5*t-3)/2>n, t-1, t))(1+h(n-1)))
end:
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
b(n, i-1)+(t-> b(n-t, min(i, h(n-t))))(i*(5*i-3)/2)))
end:
a:= n-> b(n, h(n)):
seq(a(n), n=0..100); # Alois P. Heinz, Dec 28 2018
MATHEMATICA
nmax=90; CoefficientList[Series[Product[1/(1 - x^(k (5 k - 3)/2)), {k, 1, nmax}], {x, 0, nmax}], x]
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Ilya Gutkovskiy, Dec 03 2016
STATUS
approved