[go: up one dir, main page]

login
A278707
Numbers k such that (7*10^k - 313) / 9 is prime.
0
2, 3, 5, 6, 9, 14, 18, 21, 24, 27, 29, 83, 513, 555, 750, 843, 1118, 4494, 5886, 6968, 9519, 12290, 15779, 76536, 76818, 90371
OFFSET
1,1
COMMENTS
For k > 1, numbers k such that k-2 occurrences of the digit 7 followed by the digits 43 is prime (see Example section).
a(27) > 2*10^5.
EXAMPLE
3 is in this sequence because (7*10^3 - 313) / 9 = 743 is prime.
Initial terms and associated primes:
a(1) = 2, 43;
a(2) = 3, 743;
a(3) = 5, 77743;
a(4) = 6, 777743;
a(5) = 9, 777777743; etc.
MATHEMATICA
Select[Range[0, 100000], PrimeQ[(7*10^# - 313) / 9] &]
PROG
(PARI) isok(n) = isprime((7*10^n - 313) / 9); \\ Michel Marcus, Nov 27 2016
(Magma) [n: n in [0..500] | IsPrime((7*10^n-313) div 9)]; // Vincenzo Librandi, Nov 27 2016
KEYWORD
nonn,more,hard
AUTHOR
Robert Price, Nov 26 2016
STATUS
approved