[go: up one dir, main page]

login
A278419
Decimal expansion of sum of cubes of reciprocals of nonprime numbers.
1
1, 0, 2, 7, 2, 9, 4, 2, 6, 3, 8, 6, 0, 1, 5, 0, 7, 4, 8, 9, 7, 6, 6, 2, 4, 8, 4, 6, 8, 4, 5, 7, 4, 3, 2, 8, 9, 7, 8, 9, 5, 7, 4, 1, 7, 0, 4, 1, 4, 3, 4, 9, 5, 9, 1, 9, 0, 3, 5, 9, 9, 5, 3, 8, 6, 4, 0, 2, 0, 6, 6, 1, 6, 2, 5, 8, 1, 8, 3, 5, 0, 2, 5, 5, 0, 8, 2, 1, 6, 7, 3, 0, 7, 2, 3, 6, 2, 6, 9, 7, 5, 9, 9, 4
OFFSET
1,3
LINKS
Eric Weisstein's World of Mathematics, Zeta Function.
Eric Weisstein's World of Mathematics, Prime Zeta Function.
FORMULA
Sum_{n>=1} 1/n^3 - Sum_{n>=1} 1/prime(n)^3.
Equals zeta(3) - primezetaP(3).
Sum of cubes of reciprocals of composite numbers = zeta(3) - primezetaP(3) - 1 = 0.02729426386...
EXAMPLE
1.0272942638601507489766248468457432897895741704143495919035995386402...
MATHEMATICA
RealDigits[Zeta[3] - PrimeZetaP[3], 10, 104][[1]]
PROG
(PARI) zeta(3) - sumeulerrat(1/p, 3) \\ Amiram Eldar, Mar 19 2021
CROSSREFS
Cf. A275647.
Sequence in context: A088666 A170854 A215140 * A197133 A178206 A245976
KEYWORD
nonn,cons
AUTHOR
STATUS
approved